Organolead(IV) derivatives of oxophosphorus ligands. X-ray structures of monomeric $\mathrm{R}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ and tetrameric $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{4}$

Richard A. Varga ${ }^{\text {a }}$, John E. Drake ${ }^{\text {b }}$, Cristian Silvestru ${ }^{\text {a,* }}$
${ }^{a}$ Facultatea de Chimie si Inginerie Chimica, Universitatea "Babes-Bolyai", R-3400 Cluj-Napoca, Romania
${ }^{\mathrm{b}}$ Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ont., Canada N9B $3 P 4$

Received 22 November 2002; received in revised form 20 February 2003; accepted 11 March 2003

Abstract

The reaction of $\mathrm{R}_{4-n} \mathrm{PbCl}_{n}$ with $\mathrm{Na}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]$ or $\mathrm{K}\left[\left(\mathrm{OPP}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}\right]$ afforded isolation of $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}_{2}\right.$ ($\left.\mathbf{1}\right)$, $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPP}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}_{2}\right.$ (2), $\mathrm{Me}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPP}_{2}\right)_{2} \mathrm{~N}\right]$ (3) and $\mathrm{Ph}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}\right]$ (4). Attempts to grow crystals of $\mathrm{Me}_{3} \mathrm{P}-$ $\mathrm{b}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]$ (3) led to isolation of $\mathrm{Me}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (5), as a result of decomposition. $\mathrm{Me} \mathrm{P}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)$ (6) was obtained from $\mathrm{Me}_{3} \mathrm{PbCl}$ and $\mathrm{Na}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)$. The compounds were characterized by IR and multinuclear NMR spectroscopy. The molecular structures of $\mathbf{1 , 5} \mathbf{5}$ and $\mathbf{6}$ were determined by single-crystal X-ray diffraction. The crystal of $\mathbf{5}$ contains two independent molecules in the unit cell. In both compounds the imidodiphosphinato ligands act as monometallic biconnective units, resulting in a spiro-bicyclic system with six-membered $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings of distorted boat conformation. The coordination geometry around the metal atom is distorted octahedral, with $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angles close to $180^{\circ}\left[178.9(2)^{\circ}\right.$ for $\mathbf{1 ;} 173.4(3)^{\circ}$ and $178.7(4)^{\circ}$ for molecules $\mathbf{5 a}$ and $\mathbf{5 b}$, respectively]. The crystal of the trimethyllead(IV) phosphinate (6) contains discrete tetrameric units, $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{4}$, with bridging phosphinato ligands [range: $\mathrm{Pb}-\mathrm{O} 2.373(3)-2.402(6) \AA, \mathrm{P}-\mathrm{O} 1.495(6)-1.512(6) \AA$], thus resulting in a sixteen-membered $\mathrm{Pb}_{4} \mathrm{O}_{8} \mathrm{P}_{4}$ inorganic ring. The coordination geometry at lead atoms is distorted trigonal bipyramidal, with oxygen atoms in trans positions [range: $\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ 174.7(2)-177.6(3) ${ }^{\circ}$].

(C) 2003 Elsevier Science B.V. All rights reserved.

Keywords: Organolead; Phosphorus ligands; Inorganic rings

1. Introduction

The structural investigation of organolead(IV) compounds containing dithiophosphorus ligands has revealed interesting patterns in the solid state (Scheme 1), i.e. monomeric $\mathrm{Ph}_{3} \mathrm{PbS}_{2} \mathrm{P}(\mathrm{OEt})_{2}$ (a: monometallic monoconnective dithiophosphato ligand and tetrahedral $\mathrm{C}_{3} \mathrm{PbS}$ core [1], $\mathrm{Ph}_{2} \mathrm{~Pb}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}\right.$ [1], Ph [2]) (b: monometallic biconnective dithiophosphorus ligands, distorted octahedral $\mathrm{C}_{2} \mathrm{PbS}_{4}$ core, bent $\mathrm{C}_{2} \mathrm{~Pb}$ system), and chain polymeric $\left[\mathrm{Ph}_{3} \mathrm{PbS}_{2} \mathrm{PMe}_{2}\right]_{n}$ (c: bime-

[^0]tallic biconnective dithiophosphinato ligand, trigonal bipyramidal $\mathrm{C}_{3} \mathrm{PbS}_{2}$ core, planar $\mathrm{C}_{3} \mathrm{~Pb}$ system) [3]. By contrast, $\mathrm{Ph}_{2} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ derivatives were recently reported to exhibit a polymeric structure with double-bridged phosphorus ligands between the lead atoms (d: bimetallic biconnective phosphinato ligand, octahedral $\mathrm{C}_{2} \mathrm{PbO}_{4}$ core, linear $\mathrm{C}_{2} \mathrm{~Pb}$ system) [4]. A similar double-bridging polymeric motif was also reported for inorganic lead(II) diorganophosphinates, $\left[\mathrm{Pb}\left(\mathrm{O}_{2} \mathrm{PR}_{2}\right)_{2}\right]_{n}\left(\mathrm{R}=\mathrm{Ph}[5], \mathrm{Bu}^{t}[6]\right)($ e: bimetallic biconnective phosphinato ligands and pseudo-trigonal bipyramidal PbO_{4} core).
The dichalcogenoimidodiphosphinato anions, $\left[\left(\mathrm{XPR}_{2}^{\prime}\right)\left(\mathrm{YPR}_{2}^{\prime}\right) \mathrm{N}\right]^{-}$, exhibit a significantly larger

(a)

(b)

(d)

(e)

Scheme 1.
$\mathrm{X} \cdots \mathrm{Y}$ bite than the 1,1-dichalcogenophosphorus ligands and are usually found to be coordinated to a metal center through both chalcogen atoms, thus leading to six-membered $\mathrm{MXYP}_{2} \mathrm{~N}$ inorganic chelate (carbon-free) rings [7]. So far, some inorganic lead(II) derivatives, $\mathrm{Pb}\left[\left(\mathrm{XPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}_{2}(\mathrm{X}=\mathrm{Y}=\mathrm{S}\right.$ [8], Se [9]; $\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{S}[10]$), have been investigated by singlecrystal X-ray diffraction and were found to be basically monomeric regardless of the nature of the chalcogen atoms in the organophosphorus ligand moiety [7]. We have reported some preliminary results on organolea$\mathrm{d}(\mathrm{IV})$ complexes of the type $\mathrm{R}_{n} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\right.$ $\left.\left(\mathrm{YPPh}_{2}\right) \mathrm{N}\right]_{4-n}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph} ; n=2,3 ; \mathrm{Y}=\mathrm{O}, \mathrm{S})$ within an extended abstract for a communication [11] and here we report in detail on the synthesis and spectroscopic characterization of $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}_{2}[\mathrm{Y}=\mathrm{O}\right.$ (1), S (2) $], \mathrm{R}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}\right][\mathrm{R}=\mathrm{Me}, \mathrm{Y}=\mathrm{O}$ (3); $\mathrm{R}=\mathrm{Ph}, \mathrm{Y}=\mathrm{S}$ (4)] and $\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)$ (6), along with the crystal and molecular structures of $\mathbf{1}, \mathrm{Me}_{2} \mathrm{P}$ $\mathrm{b}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}(5)$ and 6.

2. Results and discussion

2.1. Preparation

New organolead(IV) compounds were prepared as white crystalline solids by reacting $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ or $\mathrm{R}_{3} \mathrm{PbCl}$ with the alkali metal salt of the appropriate organopho-
sphorus ligand according to Eqs. (1)-(3):

$$
\begin{gather*}
\mathrm{Ph}_{2} \mathrm{PbCl}_{2}+2 \mathrm{M}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}\right] \\
\rightarrow \mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}\right]_{2}+2 \mathrm{MCl} \tag{1}\\
\mathrm{M}=\mathrm{Na}, \mathrm{Y}=\mathrm{O}(\mathbf{1}) \\
\mathrm{M}=\mathrm{K}, \mathrm{Y}=\mathrm{S}(\mathbf{2})
\end{gather*}
$$

$$
\begin{align*}
& \mathrm{R}_{3} \mathrm{PbCl}+\mathrm{M}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}\right] \\
& \rightarrow \mathrm{R}_{3} \mathrm{~Pb} {\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{YPPh}_{2}\right) \mathrm{N}\right]+\mathrm{MCl} } \tag{2}\\
& \mathrm{R}=\mathrm{Me}, \mathrm{M}=\mathrm{Na}, \mathrm{Y}=\mathrm{O} \\
& \mathrm{R}=\mathrm{Ph}, \mathrm{M}=\mathrm{K}, \mathrm{Y}=\mathrm{S} \\
&(\mathbf{4})
\end{align*}
$$

$\mathrm{Me}_{3} \mathrm{PbCl}+\mathrm{Na}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)$
$\rightarrow \underset{\text { (6) }}{\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)}+\mathrm{NaCl}$
The compounds were characterized by IR and multinuclear NMR spectroscopy $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}\right)$. Although the NMR spectra of a freshly prepared sample of the trimethyllead(IV) complex 3 were consistent with the presence of a PbC_{3} fragment, attempts to grow single crystals suitable for X-ray diffraction studies led only to isolation of $\mathrm{Me}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (5) due to a redistribution process. Similar behavior has already been reported for triorganotin(IV) analogs, thus suggesting a tendency for the ligand moiety to chelate a metal atom and to form a six-membered ring [12,13]. The molecular structures of $\mathbf{1}, 5$ and $\mathbf{6}$ have been determined by single-crystal X-ray diffraction.

2.2. IR spectra

The IR spectra of compounds $\mathbf{1}-\mathbf{4}$ exhibit strong bands in the regions $1240-1230$ and $1120-1040 \mathrm{~cm}^{-1}$, which were assigned to $v\left(\mathrm{P}_{2} \mathrm{~N}\right)$ and $v(\mathrm{PO})$ vibrations, respectively. In addition, absorptions of medium intensities around $570 \mathrm{~cm}^{-1}[v(\mathrm{PS})]$ and $770 \mathrm{~cm}^{-1}\left[\rho\left(\mathrm{CH}_{3}\right)\right]$, were observed in the spectra of compounds 2 and $\mathbf{4}$, and the methyl derivative 3, respectively. The assignments for the phosphorus-nitrogen, -oxygen and -sulfur stretching vibrations were made by comparison with the spectra of the free acids and their alkali salts, and suggest bidentate coordination of the phophorus ligand to lead through both chalcogen atoms.

2.3. NMR spectra

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra contain characteristic resonance signals for equivalent organic groups bonded to lead and phosphorus atoms and confirm the identity of the compounds obtained. The magnitude of the leadproton and lead-carbon coupling constants is consistent with the presence of diorganolead(IV) moieties in compounds $1\left[{ }^{3} J(\mathrm{PbH}) 216.5 \mathrm{~Hz},{ }^{2} J(\mathrm{PbC}) 131.0 \mathrm{~Hz}\right]$ and $2\left[{ }^{3} J(\mathrm{PbH}) 186.5 \mathrm{~Hz}\right]$, and triorganolead(IV) groups in compounds $3\left[{ }^{2} J(\mathrm{PbH}) 79.3 \mathrm{~Hz},{ }^{1} J(\mathrm{PbC}) 341.4 \mathrm{~Hz}\right]$ and $4\left[{ }^{3} J(\mathrm{PbH}) 113 \mathrm{~Hz},{ }^{2} J(\mathrm{PbC}) 87.5 \mathrm{~Hz}\right]$, respectively.

Scheme 2.

For compounds $\mathbf{1}$ and $\mathbf{3}$, which contain a symmetric dioxoimidodiphosphinato ligand, only one ${ }^{31} \mathrm{P}$ resonance is observed, suggesting the equivalence of the phosphorus atoms present in the molecule. In the case of the trimethyllead(IV) derivative 3 , the presence of only one broad ${ }^{31} \mathrm{P}$ resonance suggests a fluxional process in solution, i.e. a fast exchange of the oxygen atom involved in the primary coordination to the metal center (Scheme 2).

The ${ }^{31} \mathrm{P}$-NMR spectra of the monothioimidodiphosphinato complexes 2 and $\mathbf{4}$ contain, as expected, two resonance signals for P_{O} and P_{S} atoms of a ligand moiety, but the phosphorus-phosphorus couplings could not be observed. The resonance assigned to P_{O} ($\delta=14.4 \mathrm{ppm}$) in the spectrum of the triphenyllead(IV) derivative, $\mathrm{Ph}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}\right]$ (4), is shifted to higher field compared with the diphenyllead(IV) compound 2 ($\delta=21.8 \mathrm{ppm}$) suggesting that the primary coordination of the monothioimidodiphosphinato ligand is achieved through the oxygen atom.

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of the diphenylphosphinato derivative 6 are again consistent with the presence of a $\mathrm{Me}_{3} \mathrm{~Pb}$ moiety $\left[{ }^{2} J(\mathrm{PbH}) 85.7 \mathrm{~Hz},{ }^{1} J(\mathrm{PC})\right.$ $391.7 \mathrm{~Hz}]$. Its ${ }^{31} \mathrm{P}$-NMR spectrum shows a sharp singlet ($\delta=16.8 \mathrm{ppm}$), surrounded by satellites due to the phosphorus-carbon coupling [$\left.{ }^{1} J(\mathrm{PC}) 134.0 \mathrm{~Hz}\right]$.

2.4. Molecular structure of $\mathrm{Ph}_{2} \mathrm{~Pb}\left[(\mathrm{OPPh})_{2} \mathrm{NJ}_{2}\right.$ (1) and $\mathrm{Me}_{2} \mathrm{~Pb}\left[(\mathrm{OPPh})_{2} \mathrm{~N}_{2}\right.$ (5)

The crystals of $\mathbf{1}$ and $\mathbf{5}$ consist of discrete molecules, of similar structure, separated by normal van der Waals distances. Two independent molecules (designated as $\mathbf{5 a}$ and $\mathbf{5 b}$ in the subsequent discussion) are present in the asymmetric unit of $\mathbf{5}$. Selected interatomic distances and
angles are listed in Table 1. Figs. 1 and 2 show the ORTEP-like view of the molecular structures of $\mathbf{1}$ and $\mathbf{5}$, with the atom numbering scheme.
There are some common structural features:

1) the phosphorus ligands act as monometallic biconnective units, leading to a spiro-bicyclic system with six-membered $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings, with a planar PbO_{4} core and similar endocyclic $-\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ angles [84.8(1)/87.5(1) ${ }^{\circ}$ for $\mathbf{1}, 84.1(2) / 86.7(2)^{\circ}$ for $\mathbf{5 a}$, and 85.4(2)/87.1(2) ${ }^{\circ}$ for $\mathbf{5 b}$],
2) within a coordinated ligand unit the phosphorusoxygen $[1.515(3)-1.520(3) \AA$ for $1,1.505(6)-$ $1.519(6) \AA$ for 5a, and 1.503(6)-1.516(6) \AA for 5b] and the phosphorus-nitrogen $[1.584(4)-1.589(4) \AA$ for $\mathbf{1}, 1.583(6)-1.598(7) \AA$ for 5 a , and $1.580(7)-$ $1.600(7) \AA$ for $5 \mathbf{5 b}$ b bond distances, respectively, are equivalent within experimental error. Their magnitude suggests single phosphorus-oxygen bonds [cf. $\mathrm{Ph}_{2} \mathrm{P}(=\mathrm{O}) \mathrm{OH}: \mathrm{P}-\mathrm{O} 1.526(6), \mathrm{P}=\mathrm{O} 1.486(6) \AA$ A $][14]$ and considerable double bond character for the phosphorus-nitrogen bonds [cf. $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}-\mathrm{P}(=\right.$ $\left.\mathrm{NBu}^{t}\right) \mathrm{S}_{2}: \mathrm{P}-\mathrm{N} 1.662(2), \mathrm{P}=\mathrm{N} 1.529(2) \AA$ A $][15]$.
$3)$ the coordination geometry around the lead atom is distorted octahedral with carbon atoms from the organic groups attached to lead in trans positions.

However, there are also significant differences between the molecular structures of $\mathbf{1 , 5 a}$ and $\mathbf{5 b}$. Different degrees of distortion of the $\mathrm{C}_{2} \mathrm{PbO}_{4}$ octahedral core are noticeable. Thus, in the molecule of $\mathbf{1}$ the lead-oxygen bond distances are similar within a $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring [2.357(3)/2.368(3) and $2.347(3) / 2.376(3) \AA]$ and well within the range of those observed in the polymeric $\mathrm{Ph}_{2} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PR}_{2}\right)_{2} \quad(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ derivatives [range: $2.307(5)-2.375(5) \AA] \quad[4]$. The trans $-\mathrm{C}-\mathrm{Pb}-\mathrm{C}$

Table 1
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}(\mathbf{1})$ and $\mathrm{Me}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}(\mathbf{5})$

(1)		(5)			
		Molecule (5a)		Molecule (5b)	
Bond lengths					
$\mathrm{Pb}(1)-\mathrm{C}(1)$	2.162(5)	$\mathrm{Pb}(1)-\mathrm{C}(1)$	2.168(9)	$\mathrm{Pb}(2)-\mathrm{C}(51)$	2.124(9)
$\mathrm{Pb}(1)-\mathrm{C}(7)$	$2.150(5)$	$\mathrm{Pb}(1)-\mathrm{C}(2)$	2.138(9)	$\mathrm{Pb}(2)-\mathrm{C}(52)$	2.13(1)
$\mathrm{Pb}(1)-\mathrm{O}(1)$	2.357(3)	$\mathrm{Pb}(1)-\mathrm{O}(1)$	$2.342(5)$	$\mathrm{Pb}(2)-\mathrm{O}(5)$	2.432(5)
$\mathrm{Pb}(1)-\mathrm{O}(2)$	2.368(3)	$\mathrm{Pb}(1)-\mathrm{O}(2)$	$2.420(6)$	$\mathrm{Pb}(2)-\mathrm{O}(6)$	2.363(6)
$\mathrm{Pb}(1)-\mathrm{O}(3)$	2.347(3)	$\mathrm{Pb}(1)-\mathrm{O}(3)$	2.462(5)	$\mathrm{Pb}(2)-\mathrm{O}(7)$	2.382(5)
$\mathrm{Pb}(1)-\mathrm{O}(4)$	2.376 (3)	$\mathrm{Pb}(1)-\mathrm{O}(4)$	2.352(6)	$\mathrm{Pb}(2)-\mathrm{O}(8)$	2.407(6)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.518(3)	$\mathrm{P}(1)-\mathrm{O}(1)$	1.511(6)	$\mathrm{P}(5)-\mathrm{O}(5)$	$1.516(6)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.589(4)$	$\mathrm{P}(1)-\mathrm{N}(1)$	$1.596(7)$	$\mathrm{P}(5)-\mathrm{N}(3)$	$1.600(7)$
$\mathrm{P}(2)-\mathrm{O}(2)$	1.520 (3)	$\mathrm{P}(2)-\mathrm{O}(2)$	$1.505(6)$	$\mathrm{P}(6)-\mathrm{O}(6)$	1.512(6)
$\mathrm{P}(2)-\mathrm{N}(1)$	1.587(4)	$\mathrm{P}(2)-\mathrm{N}(1)$	1.592(6)	$\mathrm{P}(6)-\mathrm{N}(3)$	1.594(7)
$\mathrm{P}(3)-\mathrm{O}(3)$	$1.515(3)$	$\mathrm{P}(3)-\mathrm{O}(3)$	1.513(6)	$\mathrm{P}(7)-\mathrm{O}(7)$	1.513(6)
$\mathrm{P}(3)-\mathrm{N}(2)$	$1.586(4)$	$\mathrm{P}(3)-\mathrm{N}(2)$	1.598(7)	$\mathrm{P}(7)-\mathrm{N}(4)$	1.581(7)
$\mathrm{P}(4)-\mathrm{O}(4)$	1.517(3)	$\mathrm{P}(4)-\mathrm{O}(4)$	1.519(6)	$\mathrm{P}(8)-\mathrm{O}(8)$	1.503(6)
$\mathrm{P}(4)-\mathrm{N}(2)$	1.584(4)	$\mathrm{P}(4)-\mathrm{N}(2)$	1.583(6)	$\mathrm{P}(8)-\mathrm{N}(4)$	$1.580(7)$
Bond angles					
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(7)$	178.9(2)	$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(2)$	173.4(3)	$\mathrm{C}(51)-\mathrm{Pb}(2)-\mathrm{C}(52)$	178.7(4)
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(2)$	84.8(1)	$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(2)$	84.1(2)	$\mathrm{O}(5)-\mathrm{Pb}(2)-\mathrm{O}(6)$	85.4(2)
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(4)$	177.8(1)	$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(3)$	174.2(2)	$\mathrm{O}(5)-\mathrm{Pb}(2)-\mathrm{O}(7)$	176.5(2)
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(3)$	93.0(1)	$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(4)$	88.5(2)	$\mathrm{O}(6)-\mathrm{Pb}(2)-\mathrm{O}(7)$	91.9(2)
$\mathrm{O}(2)-\mathrm{Pb}(1)-\mathrm{O}(3)$	177.7(1)	$\mathrm{O}(2)-\mathrm{Pb}(1)-\mathrm{O}(4)$	172.6(2)	$\mathrm{O}(6)-\mathrm{Pb}(2)-\mathrm{O}(8)$	178.7(2)
$\mathrm{O}(2)-\mathrm{Pb}(1)-\mathrm{O}(4)$	94.8(1)	$\mathrm{O}(2)-\mathrm{Pb}(1)-\mathrm{O}(3)$	100.7(2)	$\mathrm{O}(5)-\mathrm{Pb}(2)-\mathrm{O}(8)$	95.6(2)
$\mathrm{O}(3)-\mathrm{Pb}(1)-\mathrm{O}(4)$	87.5(1)	$\mathrm{O}(3)-\mathrm{Pb}(1)-\mathrm{O}(4)$	86.7(2)	$\mathrm{O}(7)-\mathrm{Pb}(2)-\mathrm{O}(8)$	87.1(2)
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)$	90.0(2)	$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)$	90.3(3)	$\mathrm{C}(51)-\mathrm{Pb}(2)-\mathrm{O}(5)$	87.4(3)
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(2)$	88.4(1)	$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{O}(1)$	94.1(3)	$\mathrm{C}(52)-\mathrm{Pb}(2)-\mathrm{O}(5)$	91.3(3)
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(3)$	92.0(2)	$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(2)$	86.0(3)	$\mathrm{C}(51)-\mathrm{Pb}(2)-\mathrm{O}(6)$	87.8(3)
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(4)$	92.1(2)	$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{O}(2)$	89.6(3)	$\mathrm{C}(52)-\mathrm{Pb}(2)-\mathrm{O}(6)$	91.8(3)
$\mathrm{C}(7)-\mathrm{Pb}(1)-\mathrm{O}(1)$	90.1(2)	$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(3)$	86.8(3)	$\mathrm{C}(51)-\mathrm{Pb}(2)-\mathrm{O}(7)$	90.2(3)
$\mathrm{C}(7)-\mathrm{Pb}(1)-\mathrm{O}(2)$	90.6(2)	$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{O}(3)$	89.3(3)	$\mathrm{C}(52)-\mathrm{Pb}(2)-\mathrm{O}(7)$	91.1(3)
$\mathrm{C}(7)-\mathrm{Pb}(1)-\mathrm{O}(3)$	89.0(2)	$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(4)$	93.3(3)	$\mathrm{C}(51)-\mathrm{Pb}(2)-\mathrm{O}(8)$	91.3(3)
$\mathrm{C}(7)-\mathrm{Pb}(1)-\mathrm{O}(4)$	87.8(2)	$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{O}(4)$	91.7(3)	$\mathrm{C}(52)-\mathrm{Pb}(2)-\mathrm{O}(8)$	89.1(3)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	116.7(2)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	118.4(4)	$\mathrm{O}(5)-\mathrm{P}(5)-\mathrm{N}(3)$	115.7(3)
$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{N}(1)$	117.3(2)	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{N}(1)$	119.2(4)	$\mathrm{O}(6)-\mathrm{P}(6)-\mathrm{N}(3)$	117.8(4)
$\mathrm{O}(3)-\mathrm{P}(3)-\mathrm{N}(2)$	118.0(2)	$\mathrm{O}(3)-\mathrm{P}(3)-\mathrm{N}(2)$	117.2(3)	$\mathrm{O}(7)-\mathrm{P}(7)-\mathrm{N}(4)$	117.5(4)
$\mathrm{O}(4)-\mathrm{P}(4)-\mathrm{N}(2)$	118.7(2)	$\mathrm{O}(4)-\mathrm{P}(4)-\mathrm{N}(2)$	117.4(4)	$\mathrm{O}(8)-\mathrm{P}(8)-\mathrm{N}(4)$	117.7(4)
$\mathrm{P}(2)-\mathrm{N}(1)-\mathrm{P}(1)$	127.7(2)	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	130.8(5)	$\mathrm{P}(5)-\mathrm{N}(3)-\mathrm{P}(6)$	127.3(5)
$\mathrm{P}(4)-\mathrm{N}(2)-\mathrm{P}(3)$	135.4(3)	$\mathrm{P}(3)-\mathrm{N}(2)-\mathrm{P}(4)$	130.8(5)	$\mathrm{P}(7)-\mathrm{N}(4)-\mathrm{P}(8)$	135.3(5)
$\mathrm{Pb}(1)-\mathrm{O}(1)-\mathrm{P}(1)$	125.7(2)	$\mathrm{Pb}(1)-\mathrm{O}(1)-\mathrm{P}(1)$	126.0(3)	$\mathrm{Pb}(2)-\mathrm{O}(5)-\mathrm{P}(5)$	126.2(3)
$\mathrm{Pb}(1)-\mathrm{O}(2)-\mathrm{P}(2)$	125.4(2)	$\mathrm{Pb}(1)-\mathrm{O}(2)-\mathrm{P}(2)$	128.8(3)	$\mathrm{Pb}(2)-\mathrm{O}(6)-\mathrm{P}(6)$	126.3(3)
$\mathrm{Pb}(1)-\mathrm{O}(3)-\mathrm{P}(3)$	130.4(2)	$\mathrm{Pb}(1)-\mathrm{O}(3)-\mathrm{P}(3)$	125.9(3)	$\mathrm{Pb}(2)-\mathrm{O}(7)-\mathrm{P}(7)$	126.8(3)
$\mathrm{Pb}(1)-\mathrm{O}(4)-\mathrm{P}(4)$	128.5(2)	$\mathrm{Pb}(1)-\mathrm{O}(4)-\mathrm{P}(4)$	127.6(3)	$\mathrm{Pb}(2)-\mathrm{O}(8)-\mathrm{P}(8)$	128.0(3)

[178.9(2) ${ }^{\circ}$] and trans $-\mathrm{O}-\mathrm{Pb}-\mathrm{O}\left[177.7(1), 177.8(1)^{\circ}\right]$ angles are close to 180°, while the exocyclic $-\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ are almost equal [$\left.93.0(1), 94.8(1)^{\circ}\right]$. The $\mathrm{C}_{2} \mathrm{PbO}_{4}$ core in $\mathbf{5 b}$ also exhibits very similar trans-bond angle parameters [trans $-\mathrm{C}-\mathrm{Pb}-\mathrm{C} \quad 178.7(4)^{\circ}$, trans $-\mathrm{O}-\mathrm{Pb}-\mathrm{O} \quad 176.5(2)$, $\left.178.7(2)^{\circ}\right]$. However, the lead-oxygen bond distances within a $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring are significantly different [2.363(6)/2.432(5) and $2.382(5) / 2.407(6) \AA$] and the $\mathrm{O}-$ $\mathrm{Pb}-\mathrm{O}$ angle between the shorter $\mathrm{Pb}-\mathrm{O}$ bonds [91.9(2) ${ }^{\circ}$]
is smaller than that between the longer ones [95.6(2) ${ }^{\circ}$]. The distortion of the $\mathrm{C}_{2} \mathrm{PbO}_{4}$ octahedral core in $\mathbf{5 a}$ towards a bicapped tetrahedraon as observed for $\mathrm{C}_{2} \mathrm{PbS}_{4}$ in $\mathrm{Ph}_{2} \mathrm{~Pb}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}\right.$ [1], Ph [2]) is even more pronounced. The difference between the $\mathrm{Pb}-$ O bond lengths formed by a ligand moiety [2.342(5)/ $2.420(6)$ and $2.352(6) / 2.462(5) \AA]$ is even greater than in $\mathbf{5 b}$ and the deviation of the trans-bond angles at the central metal atom is considerable [trans $-\mathrm{C}-\mathrm{Pb}-\mathrm{C}$

Fig. 1. ORTEP plot of the molecule $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (1). The atoms are drawn with 25% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Fig. 2. ORTEP plot of the one of the two molecules in the asymmetric unit of $\mathrm{Me}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (5). The atoms are drawn with 25% probability ellipsoids. Hydrogen atoms are omitted for clarity.
$173.4(3)^{\circ}$, trans $-\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ 172.6(2), 174.2(2) ${ }^{\circ}$. The $\mathrm{C}_{2} \mathrm{~Pb}$ moiety is bent towards the opened $\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ angle $\left[100.7(2)^{\circ}\right]$ formed by the longer $\mathrm{P}-\mathrm{O}$ bonds.

Although some delocalization of the p-electrons over the OPNPO systems is suggested by the magnitude of the bonds, the $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings are not planar but exhibit variable conformations. Thus, the six-membered rings in 1 exhibit a chair (almost flattened) and a boat conformation, respectively, both with the metal and the nitrogen atoms in the apices. In $\mathbf{5 a}$ and $\mathbf{5 b}$, the $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings exhibit boat conformation of variable distortion and with different atom types in the apices: $\mathrm{O}(1) / \mathrm{P}(2)$ and $\mathrm{O}(3) / \mathrm{P}(4)$ atoms in $\mathbf{5 a}$, and $\mathrm{Pb}(2) / \mathrm{N}(3)$ and $\mathrm{O}(8) / \mathrm{P}(7)$ atoms in $\mathbf{5 b}$. The differences in the bond angles within a
$\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring (Table 1) and the variable bite of a ligand unit $[\mathrm{O} \cdots \mathrm{O}$ range: $3.18-3.30 \AA$ A $]$ support the high flexibility of the OPNPO skeleton which might account for the differences observed in the $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring conformation.

2.5. Molecular structure of $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{4}$ (6)

The crystal of the trimethyllead(IV) phosphinate (6) contains discrete tetrameric units, $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{4}$ (Fig. 3). The tetramer exhibits a crystallographic mirror plane passing through $\mathrm{Pb}(2)$ and $\mathrm{Pb}(3)$. Selected interatomic distances and angles are listed in Table 2.

The diphenylphosphinato ligands act as a bimetallic biconnective (bridging) moieties between $\mathrm{Me}_{3} \mathrm{~Pb}$ units, thus resulting in a sixteen-membered $\mathrm{Pb}_{4} \mathrm{O}_{8} \mathrm{P}_{4}$ inorganic ring. A similar tetrameric macrocyclic structure was reported previously for the tin analogue, $\left[\mathrm{Me}_{3} \mathrm{~S}\right.$ $\left.\mathrm{n}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{4}$ [16]. The $\mathrm{Pb}_{4} \mathrm{O}_{8} \mathrm{P}_{4}$ ring is not planar, but of chair conformation, with the $\mathrm{Pb}(1) \mathrm{P}_{2} \mathrm{O}_{2}$ and $\mathrm{Pb}(3) \mathrm{P}_{2} \mathrm{O}_{2}$ fragments above and below the plane formed by the $\mathrm{O}(1) \mathrm{Pb}(1) \mathrm{O}(3) / \mathrm{O}\left(1^{\prime}\right) \mathrm{Pb}\left(1^{\prime}\right) \mathrm{O}\left(3^{\prime}\right)$ system. Two of the methyl groups at each lead atom protrude into the $\mathrm{Pb}_{4} \mathrm{O}_{8} \mathrm{P}_{4}$ ring, while the phenyl groups at the phosphorus atoms are orientated outside the ring, thus providing a lipophilic protection to the tetramer.

The lead atoms exhibit a distorted trigonal bipyramidal geometry, with the carbon atoms of the methyl groups in equatorial positions and two oxygen atoms in the axial positions. The $\mathrm{C}_{3} \mathrm{~Pb}$ moieties are planar and the $\mathrm{Pb}-\mathrm{C}[2.16(1)-2.22(1) \AA]$ and $\mathrm{Pb}-\mathrm{O}[2.373(6)-$ 2.402(6) \AA] bond lengths are equivalent within experimental error. The differences in the $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angles $\left[115.7(6)-130.1(7)^{\circ}\right]$ and the deviation of the $\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ fragment from linearity $\left[\mathrm{O}-\mathrm{Pb}-\mathrm{O}\right.$ 174.7(2)-177.6(3) $\left.{ }^{\circ}\right]$

Fig. 3. ORTEP plot of the tetrameric $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{4}$ (6). The atoms are drawn with 25% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{4}(6)^{\text {a }}$

Bond lengths					
$\mathrm{Pb}(1)-\mathrm{C}(1)$	$2.20(1)$	$\mathrm{Pb}(2)-\mathrm{C}(4)$	$2.18(2)$	$\mathrm{Pb}(3)-\mathrm{C}(7)$	$2.16(1)$
$\mathrm{Pb}(1)-\mathrm{C}(2)$	$2.197(9)$	$\mathrm{Pb}(2)-\mathrm{C}(5)$	$2.17(2)$	$\mathrm{Pb}(3)-\mathrm{C}(8)$	$2.19(2)$
$\mathrm{Pb}(1)-\mathrm{C}(3)$	$2.18(1)$	$\mathrm{Pb}(2)-\mathrm{C}(6)$	$2.22(1)$	$\mathrm{Pb}(3)-\mathrm{C}(9)$	$2.21(1)$
$\mathrm{Pb}(1)-\mathrm{O}(1)$	$2.402(6)$	$\mathrm{Pb}(2)-\mathrm{O}(2)$	$2.373(6)$	$\mathrm{Pb}(3)-\mathrm{O}(4)$	$2.396(5)$
$\mathrm{Pb}(1)-\mathrm{O}(3)$	$2.380(6)$	$\mathrm{Pb}(2)-\mathrm{O}(2)^{\prime}$	$2.373(6)$	$\mathrm{Pb}(3)-\mathrm{O}(4)^{\prime}$	$2.396(5)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.495(6)$	$\mathrm{P}(2)-\mathrm{O}(3)$	$1.509(7)$		
$\mathrm{P}(1)-\mathrm{O}(2)$	$1.501(6)$	$\mathrm{P}(2)-\mathrm{O}(4)$	$1.512(6)$		
Bond angles					
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(3)$	$174.7(2)$	$\mathrm{O}(2)-\mathrm{Pb}(2)-\mathrm{O}(2)^{\prime}$	$177.6(3)$	$\mathrm{O}(4)-\mathrm{Pb}(3)-\mathrm{O}(4)^{\prime}$	$176.5(3)$
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(2)$	$117.1(4)$	$\mathrm{C}(4)-\mathrm{Pb}(2)-\mathrm{C}(5)$	$119.7(9)$	$\mathrm{C}(7)-\mathrm{Pb}(3)-\mathrm{C}(8)$	$130.1(7)$
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(3)$	$121.6(6)$	$\mathrm{C}(4)-\mathrm{Pb}(2)-\mathrm{C}(6)$	$118.4(8)$	$\mathrm{C}(7)-\mathrm{Pb}(3)-\mathrm{C}(9)$	$114.2(6)$
$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{C}(3)$	$121.2(5)$	$\mathrm{C}(5)-\mathrm{Pb}(2)-\mathrm{C}(6)$	$121.8(8)$	$\mathrm{C}(8)-\mathrm{Pb}(3)-\mathrm{C}(9)$	$115.7(6)$
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)$	$91.7(3)$	$\mathrm{C}(4)-\mathrm{Pb}(2)-\mathrm{O}(2)$	$90.4(2)$	$\mathrm{C}(7)-\mathrm{Pb}(3)-\mathrm{O}(4)$	$88.3(2)$
$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{O}(1)$	$93.4(3)$	$\mathrm{C}(5)-\mathrm{Pb}(2)-\mathrm{O}(2)$	$90.8(2)$	$\mathrm{C}(8)-\mathrm{Pb}(3)-\mathrm{O}(4)$	$91.2(2)$
$\mathrm{C}(3)-\mathrm{Pb}(1)-\mathrm{O}(1)$	$88.6(3)$	$\mathrm{C}(6)-\mathrm{Pb}(2)-\mathrm{O}(2)$	$88.8(2)$	$\mathrm{C}(9)-\mathrm{Pb}(3)-\mathrm{O}(4)$	$90.6(2)$
$\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{O}(3)$	$93.4(4)$				
$\mathrm{C}(2)-\mathrm{Pb}(1)-\mathrm{O}(3)$	$85.3(3)$				
$\mathrm{C}(3)-\mathrm{Pb}(1)-\mathrm{O}(3)$	$87.7(3)$		$117.6(4)$		
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	$117.6(4)$	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(4)$	$106.3(4)$		
$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(16)$	$103.6(4)$	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(28)$	$173.4(4)$	$\mathrm{P}(2)-\mathrm{O}(4)-\mathrm{Pb}(3)$	
$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{Pb}(1)$	$135.6(3)$	$\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{Pb}(2)$			$132.3(3)$
$\mathrm{P}(2)-\mathrm{O}(3)-\mathrm{Pb}(1)$	$156.8(5)$				

${ }^{\text {a }}$ Symmetry equivalent atoms $(x,-y+(1 / 2), z)$ given by a prime.
account for the distortion of the $\mathrm{C}_{3} \mathrm{PbO}_{2}$ core from an ideal polyhedron.

Within a phosphinato ligand, the phosphorus-oxygen bonds are equivalent $[1.495(6)-1.512(6) \AA]$ and their magnitude suggests intermediate character between single $\mathrm{P}-\mathrm{O}$ and double $\mathrm{P}=\mathrm{O}$ bonds [cf. $\mathrm{Ph}_{2} \mathrm{P}(=\mathrm{O}) \mathrm{OH}$: $\mathrm{P}-\mathrm{O} 1.526(6), \mathrm{P}=\mathrm{O} 1.486(6) \AA$ § [14]. The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles (Table 2) are normal for a tetrahedral $\mathrm{C}_{2} \mathrm{PO}_{2}$ core, but the bond angles at the oxygen atoms cover a wide range, from angular $[\mathrm{P}(2)-\mathrm{O}(4)-\mathrm{Pb}(3)$ $\left.132.3(3)^{\circ}\right]$ to almost linear $\left[\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{Pb}(2)\right.$ 173.4(4) $\left.{ }^{\circ}\right]$, to allow for the formation of the macrocycle.

3. Conclusions

New $\mathrm{R}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{XPPh}_{2}\right) \mathrm{N}\right]_{2}$ and $\mathrm{R}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)-\right.$ $\left.\left(\mathrm{XPPh}_{2}\right) \mathrm{N}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{X}=\mathrm{O}, \mathrm{S})$ derivatives were prepared and characterized using IR and NMR (${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) spectroscopy. The molecular structures of $\mathrm{R}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}[\mathrm{R}=\mathrm{Ph}(\mathbf{1})$, Me (5)] were investigated by X-ray diffraction. The larger bite of the imidodiphosphinato ligands accounts for the monomeric nature of both compounds. The formation of a spiro-bicyclic $\left(\mathrm{NP}_{2} \mathrm{O}_{2}\right) \mathrm{PbC}_{2}\left(\mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~N}\right)$ system is in contrast to the polymeric ring-chain structures with $\mathrm{Pb}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$ eight-membered rings of $\mathrm{Ph}_{2} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{R}=$ $\mathrm{Me}, \mathrm{Ph})$ derivatives. The compounds exhibit different degrees of distortion for the octahedral $\mathrm{C}_{2} \mathrm{PbO}_{4}$ core
and different conformations of the six-membered $\mathrm{PbO}_{2} \mathrm{P}_{2} \mathrm{~N}$ inorganic rings. For the trimethyllead(IV) phosphinate (6) a tetrameric structure, $\left[\mathrm{Me}_{3} \mathrm{P}-\right.$ $\left.\mathrm{b}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)\right]_{4}$, with a sixteen-membered $\mathrm{Pb}_{4} \mathrm{O}_{8} \mathrm{P}_{4}$ macrocyclic system is established. The bridging nature of the phosphorus ligands results in distorted trigonal bipyramidal $\mathrm{C}_{3} \mathrm{PbO}_{2}$ cores.

4. Experimental

4.1. Materials and procedures

Organolead(IV) chlorides were commercial products. $\mathrm{Na}\left[\mathrm{O}_{2} \mathrm{PPh}_{2}\right]$ was obtained by reacting $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$ [17] with MeONa , while the other starting materials were prepared according to literature methods: $\mathrm{Na}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right][18], \mathrm{K}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}\right][12]$. Infrared spectra were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ in nujol on a SPECORD IR UR 2 (Carl-Zeiss Jena, DDR) instrument. The ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{31} \mathrm{P}$-NMR spectra were recorded on a VARIAN GEMINI 300S instrument operating at $299.5,75.4$ and 121.4 MHz , respectively, using solutions in dried CDCl_{3}. The chemical shifts are reported in ppm relative to TMS and $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%$, respectively.

4.2. Preparation of bis(tetraphenylimidodiphosphinato)diphenyllead(IV), $\mathrm{Ph} h_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}_{2}\right.$ (1)

$\mathrm{Na}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right](0.5858 \mathrm{~g}, 1.33 \mathrm{mmol})$ was added to a solution of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(0.2882 \mathrm{~g}, 0.66 \mathrm{mmol})$ in 40 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 3 h at room temperature and then filtered to remove the resulting NaCl . The filtrate was evaporated under reduced pressure to obtain 1 as a white crystalline product. X-ray quality crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane (1:3) mixture. Yield: $0.70 \mathrm{~g}(88 \%)$, m.p. (dec.) $228-229^{\circ} \mathrm{C}$. Anal. Found: C, $60.2 ; \mathrm{H}, 4.1$; N, 2.5. Calc. for $\mathrm{C}_{60} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{~Pb}$: C, 60.4; H, 4.2; N , 2.4%. IR (nujol, cm^{-1}): 1240vs [$\left.v_{\text {as }}\left(\mathrm{P}_{2} \mathrm{~N}\right)\right], 1120 \mathrm{vs}$, 1080vs, 1060vs [$v(\mathrm{PO})$]. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ 6.94dd [$4 \mathrm{H}, \mathrm{Pb}-$ $\mathrm{C}_{6} H_{5}$-meta, $\left.{ }^{3} J(\mathrm{HH}) 7.1 \mathrm{~Hz}\right], 7.08 \mathrm{t}\left[2 \mathrm{H}, \mathrm{Pb}-\mathrm{C}_{6} H_{5}\right.$-para, $\left.{ }^{3} J(\mathrm{HH}) 7.3 \mathrm{~Hz}\right], 7.14 \mathrm{ddd}\left[16 \mathrm{H}, \mathrm{P}-\mathrm{C}_{6} H_{5}-\right.$ meta, ${ }^{3} J(\mathrm{HH})$ $\left.7.4,{ }^{4} J(\mathrm{PH}) 2.5 \mathrm{~Hz}\right], 7.27 \mathrm{t}\left[8 \mathrm{H}, \mathrm{P}_{-\mathrm{C}_{6} H_{5} \text {-para, }{ }^{3} J(\mathrm{HH}) 7.4}\right.$ $\mathrm{Hz}], 7.49 \mathrm{dd}\left[16 \mathrm{H}, \mathrm{P}-\mathrm{C}_{6} H_{5}\right.$-ortho, ${ }^{3} J(\mathrm{HH}) 7.5,{ }^{3} J(\mathrm{PH})$ $12.4 \mathrm{~Hz}], 7.93 \mathrm{~d}\left[4 \mathrm{H}, \mathrm{Pb}-\mathrm{C}_{6} H_{5}\right.$-ortho, ${ }^{3} J(\mathrm{HH}) 7.4$, $\left.{ }^{3} J(\mathrm{PbH}) 216.5 \mathrm{~Hz}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 127.51 \mathrm{~d}\left[C_{\mathrm{m}}, \mathrm{P}-\right.$ $C_{6} \mathrm{H}_{5},{ }^{3} J(\mathrm{PC}) \quad 13.3 \mathrm{~Hz}, 128.76 \mathrm{~s}\left(C_{\mathrm{m}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5}\right)$, $128.93 \mathrm{~s}\left(C_{\mathrm{p}}, \quad \mathrm{Pb}-C_{6} \mathrm{H}_{5}\right), \quad 130.02 \mathrm{~s} \quad\left(C_{\mathrm{p}}, \quad \mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $131.24 \mathrm{~d}\left[C_{\mathrm{o}}, \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{2} J(\mathrm{PC}) 10.5 \mathrm{~Hz}\right], 134.16 \mathrm{~s}\left[C_{\mathrm{o}}\right.$, $\left.\mathrm{Pb}-C_{6} \mathrm{H}_{5},{ }^{2} J(\mathrm{PbC}) 131.0 \mathrm{~Hz}\right], 137.27 \mathrm{~d}\left[C_{\mathrm{i}}, \mathrm{P}-C_{6} \mathrm{H}_{5}\right.$, $\left.{ }^{1} J(\mathrm{PC}) 140.0 \mathrm{~Hz}\right], 169.96 \mathrm{~s}\left(C_{\mathrm{i}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}: \delta$ 19.7s.

4.3. Preparation of
 bis(tetraphenylthioimidodiphosphinato) diphenyllead(IV), $\mathrm{Ph} h_{2} \mathrm{~Pb}\left[\left(O P h_{2}\right)\left(S P P h_{2}\right) N\right]_{2}$ (2)

$\mathrm{K}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}\right](0.7858 \mathrm{~g}, 1.66 \mathrm{mmol})$ was added to a solution of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}(0.3603 \mathrm{~g}, 0.83 \mathrm{mmol})$ in 40 ml anhydrous benzene. The reaction mixture was stirred for 3 h at room temperature and then filtered to remove the resulting KCl . The filtrate was evaporated under reduced pressure to obtain 2 as a white microcrystalline solid. Yield: $0.91 \mathrm{~g}(89 \%)$, m.p. (dec.) $190^{\circ} \mathrm{C}$. Anal. Found: C, 58.7; H, 4.2; N, 2.5. Calc. for $\mathrm{C}_{60} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{PbS}_{2}$: C, $58.8 ; \mathrm{H}, 4.1 ; \mathrm{N}, 2.3 \%$. IR (nujol, $\left.\mathrm{cm}^{-1}\right): 1240 \mathrm{vs}\left[\mathrm{vas}\left(\mathrm{P}_{2} \mathrm{~N}\right)\right], 1110 \mathrm{vs}, 1040 \mathrm{~s}[v(\mathrm{PO})], 570 \mathrm{~m}$ [$v(\mathrm{PS})$]. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.5 \mathrm{~m}\left(46 \mathrm{H}, \mathrm{Pb}-\mathrm{C}_{6} \mathrm{H}_{5}\right.$-meta + para, $\left.{ }^{\mathrm{P}}-\mathrm{C}_{6} H_{5}\right), 8.05 \mathrm{~d}\left[4 \mathrm{H}, \mathrm{Pb}-\mathrm{C}_{6} H_{5}\right.$-ortho, ${ }^{3} J(\mathrm{HH}) 7.6$, $\left.{ }^{3} J(\mathrm{PbH}) 186.5 \mathrm{~Hz}\right] .{ }^{13} \mathrm{C}$-NMR: $\delta 128.09 \mathrm{~d}\left[C_{\mathrm{m}},(\mathrm{O}) \mathrm{P}-\right.$ $\left.C_{6} \mathrm{H}_{5}+(\mathrm{S}) \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{3} J(\mathrm{PC}) 12.9 \mathrm{~Hz}\right], 129.83 \mathrm{~s}$, br $\left(C_{\mathrm{m}}+\right.$ $\left.C_{\mathrm{p}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5}\right), 131.46 \mathrm{~s}, \mathrm{br}\left[C_{\mathrm{o}}+C_{\mathrm{p}},(\mathrm{O}) \mathrm{P}-C_{6} \mathrm{H}_{5}+(\mathrm{S}) \mathrm{P}-\right.$ $C_{6} \mathrm{H}_{5}$], $135.02 \mathrm{~s}\left(C_{\mathrm{o}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5}\right)$ (resonance signals for ipso carbons could not be observed). ${ }^{31}$ P-NMR: $\delta 21.8 \mathrm{~s}$ $\left(P_{\mathrm{O}}\right), 31.8 \mathrm{~s}\left(P_{\mathrm{S}}\right)$.

4.4. Preparation of (tetraphenylimidodiphosphinato)trimethyllead(VI), $\mathrm{Me}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]$ (3)

$\mathrm{Na}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right](0.7323 \mathrm{~g}, 1.66 \mathrm{mmol})$ was added to a solution of $\mathrm{Me}_{3} \mathrm{PbCl}(0.4796 \mathrm{~g}, 1.66 \mathrm{mmol})$ in 40 ml
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 3 h at room temperature and then filtered to remove the resulting NaCl . The filtrate was evaporated under reduced pressure to obtain $\mathbf{3}$ as a white microcrystalline product. Yield: $0.74 \mathrm{~g}(95 \%)$, m.p. $145-147^{\circ} \mathrm{C}$. Anal. Found: C, 48.2; H, 4.1; N, 2.2. Calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{~Pb}: \mathrm{C}, 48.5 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.1 \%$. IR (nujol, $\left.\mathrm{cm}^{-1}\right): 1240 \mathrm{vs}\left[\mathrm{vas}_{\mathrm{as}}\left(\mathrm{P}_{2} \mathrm{~N}\right)\right], 1110 \mathrm{vs}, 1040 \mathrm{~s}[v(\mathrm{PO})], 770 \mathrm{~m}$ $\left[\rho\left(\mathrm{CH}_{3}\right)\right] .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.30 \mathrm{~s}\left[9 \mathrm{H}, \mathrm{Pb}-\mathrm{C} H_{3},{ }^{2} J(\mathrm{PbH})\right.$ $79.3 \mathrm{~Hz}], 7.29 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{P}-\mathrm{C}_{6} H_{5}-\mathrm{meta}\right), 7.37 \mathrm{t}[4 \mathrm{H}, \mathrm{P}-$ $\mathrm{C}_{6} H_{5}$-para, $\left.{ }^{3} J(\mathrm{HH}) 7.1 \mathrm{~Hz}\right], 7.68 \mathrm{dd}\left[8 \mathrm{H}, \mathrm{P}-\mathrm{C}_{6} H_{5}\right.$-ortho, $\left.{ }^{3} J(\mathrm{HH}) 7.4,{ }^{3} J(\mathrm{PH}) 12.4 \mathrm{~Hz}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 19.61 \mathrm{~s}[\mathrm{~Pb}-$ $\left.C \mathrm{H}_{3},{ }^{1} J(\mathrm{PbC}) 341.4 \mathrm{~Hz}\right], 127.95 \mathrm{~d}\left[C_{\mathrm{m}}, \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{3} J(\mathrm{PC})\right.$ 13.4 Hz], $130.55 \mathrm{~s}\left(C_{\mathrm{p}}, \mathrm{P}-C_{6} \mathrm{H}_{5}\right), 131.31 \mathrm{~d}\left[C_{\mathrm{o}}, \mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\left.{ }^{2} J(\mathrm{PC}) 10.7 \mathrm{~Hz}\right], 137,23 \mathrm{~d}\left(C_{\mathrm{i}}, \mathrm{P}-C_{6} \mathrm{H}_{5}\right),{ }^{1} J(\mathrm{PC}) 132.3$ Hz]. ${ }^{31} \mathrm{P}$-NMR: $\delta 13.8 \mathrm{~s}, \mathrm{br}$.
The attempt to obtain suitable crystals for X-ray diffraction from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane (1:3) mixture resulted in isolation of the redistribution product, $\mathrm{Me}_{2} \mathrm{P}$ $\mathrm{b}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (5), following a decomposition process (see Section 2).

4.5. Preparation of
 (tetraphenylthioimidodiphosphinato) triphenyllead(VI), $\mathrm{Ph}_{3} \mathrm{~Pb}\left[\left(\mathrm{OPPh} h_{2}\right)\left(S P h_{2}\right) N\right]$ (4)

$\mathrm{K}\left[\left(\mathrm{OPPh}_{2}\right)\left(\mathrm{SPPh}_{2}\right) \mathrm{N}\right](0.5239 \mathrm{~g}, 1.11 \mathrm{mmol})$ was added to a solution of $\mathrm{Ph}_{3} \mathrm{PbCl}(0.5267 \mathrm{~g}, 1.11 \mathrm{mmol})$ in 40 ml anhydrous benzene. The reaction mixture was stirred for 3 h at room temperature and then filtered to remove the resulting KCl . The filtrate was evaporated under reduced pressure to obtain 4 as a white solid. Yield: $0.81 \mathrm{~g}\left(82^{\%} \%\right.$), m.p. $112-114^{\circ} \mathrm{C}$. Anal. Found: C, 58.2; $\mathrm{H}, 4.3 ; \mathrm{N}, 1.4$. Calc. for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{NOP}_{2} \mathrm{PbS}: \mathrm{C}, 57.9$; $\mathrm{H}, 4.1 ; \mathrm{N}, 1.6 \%$. IR (nujol, cm^{-1}): 1230s $\left[\mathrm{v}_{\mathrm{as}}\left(\mathrm{P}_{2} \mathrm{~N}\right)\right]$, 1120s, 1080s, 1060s [$v(\mathrm{PO})$], $570 \mathrm{~m}[v(\mathrm{PS})] .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta$ $7.3 \mathrm{~m} \quad\left[25 \mathrm{H}, \quad \mathrm{Pb}-\mathrm{C}_{6} H_{5}-\mathrm{meta}+\right.$ para, $\mathrm{P}-\mathrm{C}_{6} H_{5}-$ meta + para, (O) $\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}$-ortho $], 7.49 \mathrm{~m}\left[4 \mathrm{H}, \mathrm{Pb}-\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ortho, ${ }^{3} J(\mathrm{PbH}) \quad 113 \mathrm{~Hz}, \quad 7.61 \mathrm{dd} \quad\left[4 \mathrm{H}, \quad(\mathrm{S}) \mathrm{P}-\mathrm{C}_{6} H_{5}\right.$-ortho, $\left.{ }^{3} J(\mathrm{HH}) 7.6,{ }^{3} J(\mathrm{PH}) 14.0 \mathrm{~Hz}\right] \cdot{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 127.35 \mathrm{~d}$ $\left[C_{\mathrm{m}}, \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{3} J(\mathrm{PC}) 13.2 \mathrm{~Hz}\right], 127.69 \mathrm{~d}\left[C_{\mathrm{m}}, \mathrm{P}-C_{6} \mathrm{H}_{5}\right.$, $\left.{ }^{3} J(\mathrm{PC}) 13.7 \mathrm{~Hz}\right], 129.22 \mathrm{~s}\left(C_{\mathrm{p}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5}\right), 129.58 \mathrm{~s}\left(C_{\mathrm{p}}\right.$, $\left.\mathrm{P}-C_{6} \mathrm{H}_{5}\right), 129.84 \mathrm{~s}\left[C_{\mathrm{m}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5},{ }^{3} J(\mathrm{PbC}) 107.1 \mathrm{~Hz}\right]$, $130.28 \mathrm{~s}\left(C_{\mathrm{p}}, \mathrm{P}-C_{6} \mathrm{H}_{5}\right), 131.32 \mathrm{~d}\left[C_{\mathrm{o}}, \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{2} J(\mathrm{PC})\right.$ $12.0 \mathrm{~Hz}],{ }^{131.54 \mathrm{~d}}\left[C_{\mathrm{o}}, \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{2} J(\mathrm{PC}) 11.1 \mathrm{~Hz}\right]$, $136.88 \mathrm{~s}\left[C_{\mathrm{o}}, \mathrm{Pb}-C_{6} \mathrm{H}_{5},{ }^{2} J(\mathrm{PbC}) 87.5 \mathrm{~Hz}\right.$], 157.16s $\left[C_{\mathrm{i}}\right.$, $\mathrm{Pb}-\mathrm{C}_{6} \mathrm{H}_{5}$] (resonance signals for ipso carbons of $\mathrm{P}-$ $C_{6} \mathrm{H}_{5}$ could not be observed). ${ }^{31} \mathrm{P}$-NMR: $\delta 14.4 \mathrm{~s}\left(P_{\mathrm{O}}\right)$, 31.6s (P_{S}).

4.6. Preparation of

(diphenylphosphinato) trimethyllead(VI),
$\mathrm{Me}_{3} \mathrm{~Pb}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)$ (6)
$\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{Na}(0.4803 \mathrm{~g}, 2 \mathrm{mmol})$ was added to a solution of $\mathrm{Me}_{3} \mathrm{PbCl}(0.5755 \mathrm{~g}, 2 \mathrm{mmol})$ in $40 \mathrm{ml} \mathrm{CH} 3{ }_{3} \mathrm{Cl}$. The
reaction mixture was stirred for 3 h at room temperature and then filtered to remove the resulting NaCl . The filtrate was evaporated under reduced pressure to obtain 6 as a white solid. X-ray quality crystals were grown from $\mathrm{CH}_{3} \mathrm{Cl}-n$-hexane (1:3) mixture. Yield: 0.83 g (88%), m.p. $216-218^{\circ}$ C. Anal. Found: C, 38.2; H, 4.2. Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{PPb}$: C, 38.4; $\mathrm{H}, 4.1 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta$ $1.34 \mathrm{~s}\left[9 \mathrm{H}, \mathrm{Pb}-\mathrm{CH}_{3},{ }^{2} J(\mathrm{PbH}) 85.7 \mathrm{~Hz}\right], 7.33 \mathrm{~m}(6 \mathrm{H}, \mathrm{P}-$ $\mathrm{C}_{6} H_{5}-$ meta + para $), 7.57 \mathrm{dm}\left[4 \mathrm{H}, \mathrm{P}-\mathrm{C}_{6} H_{5}\right.$-ortho, ${ }^{3} J(\mathrm{HH})$ $\left.7.7,{ }^{4} J(\mathrm{HH}) 1.4,{ }^{3} J(\mathrm{PH}) 11.5 \mathrm{~Hz}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 14.37 \mathrm{~s}$ $\left[\mathrm{Pb}-\mathrm{CH}_{3},{ }^{1} J(\mathrm{PC}) 391.7 \mathrm{~Hz}\right], 122.59 \mathrm{~d}\left[C_{\mathrm{m}}, \mathrm{P}-C_{6} \mathrm{H}_{5}\right.$, $\left.{ }^{3} J(\mathrm{PC}) 12.2 \mathrm{~Hz}\right], 124.79 \mathrm{~s}\left(C_{\mathrm{p}}, \mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 125.81 \mathrm{~d}\left[C_{\mathrm{o}}, \mathrm{P}-\right.$ $\left.C_{6} \mathrm{H}_{5},{ }^{2} J(\mathrm{PC}) 9.7 \mathrm{~Hz}\right], 133.41 \mathrm{~d}\left[C_{\mathrm{i}}, \mathrm{P}-C_{6} \mathrm{H}_{5},{ }^{1} J(\mathrm{PC})\right.$ 134.5 Hz]. ${ }^{31} \mathrm{P}-\mathrm{NMR}: \delta 16.8 \mathrm{~s}$ [${ }^{1} J(\mathrm{PC}) 134.0 \mathrm{~Hz}$].

4.7. X-ray structure determination

A colourless plate crystal of $\mathrm{Me}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}_{2}\right.$ (5) and block colourless crystals of $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (1) and $\left[\mathrm{Me}_{3} \mathrm{~Pb}\left[\left(\mathrm{O}_{2} \mathrm{Ph}_{2}\right)\right]_{4}(6)\right.$ were mounted on glass fibres and sealed with epoxy glue. Data were collected on a Siemens SMART/CCD system at McMaster University with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, operating at 50 kV and 35 mA . Cell constants corresponded
to triclinic (1 and 5) and orthorhombic (6) cells whose dimensions are given in Table 3 along with other experimental parameters and relevant information pertaining to structure solution and refinement. Semiempirical absorption corrections were applied.

The structures were solved by direct methods [19]. All of the non-hydrogen atoms were treated anisotropically. Hydrogen atoms were included in idealized positions with isotropic thermal parameters set at 1.2 times that of the carbon atom to which they were attached. The final cycle of full-matrix least-squares refinement [20] was based on 11799 for 1, 21294 for 5, and 7762 for $6[7940$ for $\mathbf{1}, 9032$ for 5 , and 4521 for $\mathbf{6}, F^{2}>2 \sigma\left(F^{2}\right)$] independent reflections and 630 for $\mathbf{1}, 1103$ for 5, and 364 for 6 variable parameters and converged (largest parameter shift was 0.001 times its estimated S.D.).

5. Supplementary material

Crystallographic data for the structural analysis of compounds 1, 5 and 6 have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 182709 (1), 182708 (5), 182710 (6). Copies of the

Table 3
Crystal data and structure refinement for $\mathrm{Ph}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}(\mathbf{1}), \mathrm{Me}_{2} \mathrm{~Pb}\left[\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ (5), and $\left[\mathrm{Me} \mathrm{Pbb}_{3}\left(\mathrm{OPPh}_{2}\right)_{2} \mathrm{~N}\right]_{4}$ (6)

	(1)	(5)	(6)
Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{~Pb}$	$\mathrm{C}_{100} \mathrm{H}_{92} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}_{8} \mathrm{~Pb}_{2}$	$\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~Pb}_{4}$
Formula weight	1194.09	2139.92	1877.85
Temperature (${ }^{\circ} \mathrm{C}$)	26(2)	26(2)	26(2)
Wavelength (A)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Orthorhombic
Space group	$P \overline{1}$	$P \overline{1}$	Pnma
$a(\AA)$	10.689(2)	11.015(1)	15.256(4)
$b(\AA)$	10.824(2)	19.044(1)	29.633(7)
$c(\AA)$	24.782(4)	22.943(2)	14.736(1)
$\alpha\left({ }^{\circ}\right)$	86.17(1)	81.86(1)	90
$\beta\left({ }^{\circ}\right)$	79.69(1)	87.75(2)	90
$\gamma\left({ }^{\circ}\right)$	69.54(1)	84.79(1)	90
Volume (A^{3})	2643(3)	4743.0(8)	6661(1)
Z	2	2	4
Density (calculated) $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.500	1.498	1.872
Absorption coefficient (mm^{-1})	3.362	3.737	10.222
$F\left(\begin{array}{lll}0 & 0\end{array}\right)$	1196	2136	3552
Crystal size (mm^{3})	$0.34 \times 0.16 \times 0.18$	$0.19 \times 0.10 \times 0.04$	$0.28 \times 0.25 \times 0.20$
θ range for data collection (${ }^{\circ}$)	$2.01-27.52$	1.31-27.51	$1.37-27.48$
Index ranges	$\begin{aligned} & -12 \leq h \leq 13,-14 \leq k \leq 13,- \\ & 31 \leq l \leq 32 \end{aligned}$	$\begin{aligned} & -14 \leq h \leq 13,-24 \leq k \leq 24,- \\ & 29 \leq l \leq 29 \end{aligned}$	$\begin{aligned} & -19 \leq h \leq 19,-38 \leq k \leq 16,- \\ & 19 \leq l \leq 18 \end{aligned}$
Reflections collected	24163	43104	46004
Independent reflections	$11799\left[R_{\text {int }}=0.0538\right]$	$21294\left[R_{\text {int }}=0.1114\right]$	$7762\left[R_{\text {int }}=0.1071\right]$
Max./min. transmission	0.6153/0.3944	0.8649/0.5370	0.2343/0.1620
Refinement method	Full-matrix least-squares on F^{2}		
Data/restraints/parameters	11 799/0/630	21 294/0/1103	7762/0/364
Goodness-of-fit on F^{2}	0.936	0.935	1.001
Final R indices [$F^{2}>2 s\left(F^{2}\right)$]	$R_{1}=0.0462, w R_{2}=0.0700$	$R_{1}=0.0718, w R_{2}=0.0880$	$R_{1}=0.0515, w R_{2}=0.0839$
R indices (all data)	$R_{1}=0.0917, w R_{2}=0.0802$	$R_{1}=0.2118, w R_{2}=0.1169$	$R_{1}=0.1159, w R_{2}=0.0998$
Largest difference peak and hole (e \AA^{3})	1.039 and -0.781	0.758 and -0.765	1.612 and -1.251

information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam. ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by the National University Research Council (grants 45/312/2000 and 58/112/2002). J.E.D thanks the Natural Sciences and Engineering Research Council of Canada for financial support and Jim Britten of the McMaster Chemistry X-ray Facility for providing help and facilities.

References

[1] M.G. Begley, C. Gaffney, P.G. Harrison, A. Steel, J. Organomet. Chem. 289 (1985) 281.
[2] S.N. Olafsson, T.N. Petersen, P. Andersen, Acta Chem. Scand. 50 (1996) 745.
[3] F.T. Edelmann, I. Haiduc, C. Silvestru, H.-G. Schmidt, M. Noltemeyer, Polyhedron 17 (1998) 2043.
[4] A.-F. Shihada, F. Weller, Z. Anorg. Allg. Chem. 627 (2001) 638.
[5] P. Colamarino, P.L. Orioli, W.D. Benzinger, H.D. Gillman, Inorg. Chem. 15 (1976) 800.
[6] V. Chandrasekhar, A. Chandrasekaran, R.O. Day, H.M. Holmes, R.R. Holmes, Phosphorus, Sulfur \& Silicon 115 (1996) 125.
[7] C. Silvestru, J.E. Drake, Coord. Chem. Rev. 223 (2001) 117.
[8] J.S. Casas, A. Castineiras, I. Haiduc, A. Sanchez, J. Sordo, E.M. Vazquez-Lopez, Polyhedron 13 (1994) 2873.
[9] V. Garcia-Montalvo, J. Novosad, P. Kilian, J.D. Woollins, A.M.Z. Slawin, P. Garcia y Garcia, M. Lopez-Cardoso, G. Espinosa-Perez, R. Cea-Olivares, J. Chem. Soc. Dalton Trans. (1997) 1025.
[10] V. Garcia-Montalvo, R. Cea-Olivares, G. Espinosa-Perez, Polyhedron 15 (1996) 829.
[11] R. Varga, J.E. Drake, C. Silvestru, Phosphorus, Sulfur \& Silicon 169 (2001) 47.
[12] R. Rösler, J.E. Drake, C. Silvestru, J. Yang, I. Haiduc, J. Chem. Soc. Dalton Trans. (1996) 391.
[13] C. Silvestru, R. Rösler, A. Silvestru, J.E. Drake, J. Organomet. Chem. 642 (2002) 71.
[14] D. Fenske, R. Mattes, J. Löns, K.-F. Tebbe, Chem. Ber. 106 (1973) 1139.
[15] S. Pohl, Chem. Ber. 109 (1976) 3122.
[16] M.G. Newton, I. Haiduc, R.B. King, C. Silvestru, J. Chem. Soc. Chem. Commun. (1993) 1129.
[17] W.A. Higgins, P.W. Vogel, W.G. Graig, J. Am. Chem. Soc. 77 (1955) 1864.
[18] R.O. Day, R.R. Holmes, A. Schmidpeter, K. Stoll, L. Howe, Chem. Ber. 124 (1991) 2443.
[19] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
[20] G.M. Sheldrick, SHELXL97, University of Göttingen, Germany.

[^0]: * Corresponding author. Fax: +98-40-64-190818.

 E-mail address: cristi@chem.ubbcluj.ro (C. Silvestru).

